东北林业大学751数学分析2026年考研大纲及参考书目
2025.09.30 07:19

  东北林业大学

  2026 年硕士研究生招生考试自命题科目考试大纲

  初试科目代码:(751) 初试科目名称: 数学分析

  考试内容范围:

  一、实数理论

  1. 实数系的基本定理。

  2. 利用实数系的基本定理证明闭区间上连续函数的性质。

  二、极限与连续

  1. 数列极限的概念,收敛数列的性质,数列极限存在的条件。

  2. 函数极限的概念,函数极限的性质,函数极限存在的条件。

  3. 函数极限与数列极限之间的关系。

  4. 无穷大量与无穷小量的概念及相关性质。

  5. 函数连续的概念及性质、间断点及其分类,一致连续的概念。

  6. 闭区间上连续函数的性质。

  三、微分学

  1.导数、偏导数的概念与计算。

  2.高阶导数与高阶偏导数的计算。

  3.一元及多元函数微分的概念及计算、可微性的判断。

  4.罗尔定理、拉格朗日中值定理、柯西中值定理、洛必达法则、泰勒公式。

  5.一元函数导数的应用:函数的单调性与极值、凸性与拐点。

  6.偏导数的应用:空间曲线的切线与法平面、曲面的切平面与法线,无条件极值与条件极值。

  7.函数的分析性质及其相互之间的关系。

  四、积分学

  1.不定积分的分部积分法、换元积分法、有理函数积分法、简单无理函数及三角函数积分法。

  2.定积分的概念,函数Riemann可积的充分必要条件。

  3.微积分基本定理,定积分的换元积分法及分部积分法。

  4.利用定积分求平面图形面积、平面曲线弧长、几何体体积。

  5.反常积分的概念、计算、收敛性判别法。

  6.含参变量常义积分的性质。

  7.含参变量反常积分一致收敛的概念、判别法及分析性质。

  8.Gamma函数与Beta函数的性质。

  9.二重积分、三重积分、曲线积分、曲面积分的计算。

  10. 格林公式、高斯公式及斯托克斯公式。

  五、级数

  1. 数项级数收敛与发散的概念,收敛级数的性质。

  2. 正项级数收敛性的判别法。

  3. 任意项级数绝对收敛及条件收敛的判别方法。

  4. 函数项级数一致收敛的概念、性质、判别法。

  5. 幂级数的收敛域,幂级数和函数的性质与计算,函数的幂级数展开。

  参考书目:《数学分析》(第三版上下册),陈纪修、於崇华、金路,高等教育出版社,

  2019 年。

  考试总分:150分 考试时间:3小时 考试方式:笔试

MORE+

    相关阅读 MORE+

    版权及免责声明
    1.凡本网注明"稿件来源:新东方在线"的所有文字、图片和音视频稿件,版权均属北京新东方迅程网络科技有限公司所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方在线",违者本网将依法追究责任。
    2.本网末注明"稿件来源:新东方在线"的文/图等稿件均为转载稿,本网转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方在线”,本网将依法追究责任。
    3.如本网转载稿涉及版权等问题,请作者致信weisen@xdfzx.com,我们将及时外理

    Copyright © 2011-202

    All Rights Reserved