2024.11.15 17:38
2024年9月21日下午场的托福考试已经成为回忆,新东方在线SAT考试网为大家整理了此次考试的托福阅读机经,让我们一起来回顾和分析这次的阅读考查内容。
历史类
The collapse of Maya
第一段介绍了玛雅社会的特点,包括其人口规模和密度,以及为了支持这些人口而发展出的集约农业方法,如大规模灌溉和梯田耕作。这些方法虽然在提高产量和扩大耕种面积方面非常成功,但也对环境造成了巨大压力,使环境变得脆弱,容易受到气候事件的影响。
第二段讨论了玛雅城市国家衰落的早期观点,将其归因于灾难性的崩溃或天启式的推翻。然而,近期的研究强调了这一过程的渐进性和区域性,从南部开始逐渐向北推进。战争和社会动荡可能在这一过程中起了作用,但这些可能是由于其他压力源导致的。
第三段探讨了食物短缺的可能性,这可能是由于自然环境变化或人为因素引起的。玛雅城市之间的竞争导致了八世纪和九世纪纪念碑建设的激增,这增加了对农业生产和扩张的压力。州际竞争可能推动了玛雅人过度开发他们脆弱的生态系统,导致森林砍伐和土壤侵蚀,最终破坏了土地支持玛雅城市高人口水平的能力。
第四段指出,不能完全将责任归咎于人类活动。一些低地城市,如蒂卡尔,可能严重依赖于在湿地凹陷处建立的高架田地的耕作。这些地区的水位稳定对于这种集约耕作系统至关重要,但来自尤卡坦的奇查纳巴湖的证据表明,公元800年到1000年间,该地区经历了几千年来最干旱的气候时期。这可能导致水位下降,许多地区的高架田地变得无法使用。然而,人类对这些困难的应对必须通过社会、政治和文化环境的镜头来观察,这些环境对玛雅人如何应对困难产生了强大的中介作用。
第五段讨论了玛雅文明衰落的复杂性,指出人口水平较低可能会减轻干旱的影响,但玛雅人已经达到了可用生存能力的极限,而且玛雅精英阶层支持某些社会和政治议程(包括昂贵的战争和相互竞争)。正是在这种特定的背景下,干旱期很快导致了危机和崩溃。
生物类
两种授粉方法
第一段介绍了树木通过风、水或动物进行传粉的不同方式,并指出大型动物传粉树木面临的挑战,即如何在吸引传粉者的同时促使它们在树木间移动。文章还讨论了树木产生足够花蜜和花粉以吸引传粉者的需要,以及产生过多可能导致传粉者停留在一个树上而不是移动到下一棵树的风险。
第二段提出了一种解决方案,即在其他物种不开花的时候开花,以便独占传粉者。描述了热带树木如何通过树木的不同部分同时展现花、芽和果实来吸引传粉者。介绍了另一种策略,即在长时间内(可能全年)只产生少量花朵,吸引传粉者通过“陷阱式”路线访问分散的花朵。
第三段讨论了大规模开花的树木,特别是在没有明显干季的热带常绿森林中。描述了龙脑香属植物如何在数年的不活跃后,几乎同时开花并结果,以及这种现象的地理范围。解释了这些树木如何通过让不同物种依次开花,以及花朵短暂开放的策略来解决传粉问题。
第四段讨论了大规模开花树木使用相对不专一的传粉者,这为它们提供了更多的传粉者资源。描述了通过大规模开花产生的强烈视觉影响,如何吸引远处的传粉者。提到了昆虫间的竞争如何有助于树木,因为一些昆虫在争夺花朵的过程中可能会被挤到下一棵树上。
历史类
汉代坟墓雕塑
第一段讲述了石雕在中国艺术中的出现较晚,直到汉代才开始广泛使用。西汉时期,石雕主要用于皇帝或地方统治者的墓葬,而到了东汉时期,石雕的使用变得更加普遍。这一变化与当时政治哲学中对墓葬重要性的增加有关。
第二段描述了西汉早期皇帝面临建立统一帝国的挑战,他们保留了基于军事力量和严厉法律的政策。但到了公元前一世纪中叶,这些政策被孔子的哲学思想所取代,强调个人和政府的道德,以及通过教育实现人类完美和社会等级制度中的相互责任和义务。
第三段指出,对公民义务和秩序的强调促进了国家的稳定、忠诚和服从,加强了中央权力。同时,对教育价值的重视吸引了知识分子加入国家服务,提供了合格的行政机构。随着生活水平的不断提高,孝道的重要性导致了竞争性的墓葬建设,帝王陵墓的奢华被向下复制。
第四段解释了仪式的变化增加了墓葬的重要性和展示的范围。祖先仪式从城市或宫殿寺庙转移到坟墓本身,使得有必要在坟墓土堆以南建造一个可以进行祭祀的大厅。为了强调遗址的重要性,墓葬的入口处被称为“精神之路”,死者将沿着这条路前往坟墓。
第五段指出,石雕的使用迅速扩展,不再只是少数人的特权,而是向渴望通过在父亲坟墓上竖立独立的石像来展示他们的虔诚和财富的公民开放。为了防止石雕地位的完全贬值,其使用受到了帝国法令的控制,灵道雕像的数量和题材根据死者的社会等级来规定。
第六段提到,现存的陵墓雕像比任何其他形式的汉代雕像都多,了解第一和第二世纪雕塑发展的最简单方法是将陵墓作为起点。在公元一世纪,与陵墓相关的石头使用量显著增加,墓室内外的装饰和布局遵循一个协调的计划,展现了当代生活和思想的图景。
生物类
Group living
猩猩的狩猎行为与群体的关系。
天文类
The Cooling of Early Earth
Earth formed just under 4.6 billion years ago, and for its first 50 to100 million years, it was a boiling ball of liquid rock without a permanent crust (hard outermost layer).An important event in Earth's earliest phase is known as the differentiation event, which completely changed the initially uniform composition of the planet. it happened around 4.5 billion years ago, when the planet had grown large enough for pressure to drive temperatures in the interior above1,000℃(degrees Celsius), the point at which rocks melt. Then, denser (metal-rich) materials sank to the center of the planet, and less dense (rocky) materials rose toward the surface. The sinking dense materials formed Earth's nickel-iron core, the planet's inner3,500 kilometers or so. The lighter materials that rose up formed the less-dense rocky mantle, the planet's outer 2,900 kilometers.
The formation of Earth's core transformed conditions on Earth's surface. This is because it created the right conditions for development of the planet's magnetic field, which originates from movements in the outer layers of Earth's core. It had been known fora while that the magnetic field was already operational by about 3.5billion years ago, and very recent research has brought that back to before 4 billion years ago. The magnetic field is Earth's only real protection against the solar wind (charged particles from the Sun), which was stripping gases from the earliest atmosphere before the magnetic field had started up. Thus, the differentiation event is thought to have been critical for reducing the loss of light elements from the atmosphere to space. Without it, Earth might have ended up without hydrogen, and thus without water. And over time, many heavier gases would also have been stripped off by the solar wind. Mars is thought to have started out with a magnetic field but—being much smaller than Earth—to have cooled enough for its magnetic field to die at around 4 billion years ago. It subsequently lost almost all of its atmosphere and surface water. While this often-used explanation for retaining an atmosphere by presence of a magnetic field sounds plausible, some further thought suggests that things maybe a little more complicated. Venus has no magnetic field and is closer to the Sun yet has a very well-developed atmosphere. Venus and Earth have similar sizes and masses, while Mars is much smaller—hence, gravity may have been equally or more important for retaining an atmosphere than a magnetic field, especially when the gases concerned are heavier gases, like the dominant CO2 (carbon dioxide) on Venus.
At Earth's position in the earliest solar system, temperatures of 250°C to 350°C would be expected, but the energy from the intense early impacting by objects from space had pushed temperatures up well above the melting temperature of rocks. Still, research has demonstrated that as early as about 4.4 billion years ago, Earth's surface had not only cooled sufficiently to form early crust (likely below 1,000°C) but even enough to allow for the presence of liquid water, which at modern atmospheric pressure would mean that temperatures had dropped below 100°C. However, at higher pressures this value is higher, and we don't really know how dense the early atmosphere was. So 100°C is a lower estimate; true temperatures may have been double that value if the early atmosphere was very dense.
Now that clouds and rain had appeared on the scene, oceans began to develop. Large portions of the planet were covered with water by about 4 billion years ago. This is somewhat unexpected because, at this time, Earth's fiery birth phase had rapidly settled down, and the Sun was only about 70 percent as strong as it is today. After their first bright ignition, stars like the Sun shine more weakly and then grow gradually more intense with age; we refer to this as the "faint young Sun." With only 70 percent of the modern energy coming in from the Sun, early Earth should have been covered by ice, not water. Somehow, Earth's early atmosphere must have retained heat more effectively than the modern atmosphere. Indeed, reconstructions of the early atmosphere's composition suggest high levels of CO2, water vapor, and methane, which would have caused efficient heat retention.
社会类
杀虫剂。
【免费领取托福机经完整版】
回复【资料】获取SAT备考全套资料包
关注美本助教老师
回复【资料】获取SAT备考全套资料包