原文
详解

Narrator: Listen to part of a lecture in an astronomy class.

独白:请听一段天文学课上的讲话。

Professor: Now astronomy didn't really bloom into the science it is today until the development of spectroscopy.

教授:如今,直到光谱学发展起来了天文学才成为真正的科学。

Spectroscopy is basically the study of spectra and spectral lines of light, and specifically for us, the light from stars.

光谱学基本上是针对光谱的研究,光谱光线,而特别对我们而言,还有行星发出的光芒。

It makes it possible to analyze the light emitted from stars.

这使得我们分析从行星发出的光芒有了可能性。

When you analyze this light, you can figure out their distance from the earth, and identify what they are made of, determine their chemical composition.

当你分析这种光线的时候,你可以得出其从地球到该行星的距离,分析他们的构成,决定了他们的化学成分。

Before we get into that though, it's probably a good thing to back up a bit.

在我们讨论这个之前,我们最好是回顾一下之前学过的。

You all know how when you take a crystal prism and pass a beam of sunlight through it, you get a spectrum, which looks like a continuous band of rainbow colors.

你们都知道,当你拿出一条水晶棱柱通过一束太阳光的时候,你会看到一道光谱,看起来就是一束连续的彩虹色彩斑带。

The light that we see with our human eyes as a band of rainbow color falls in a range of what’s called visible light.

我们肉眼所看到的彩虹斑带将集合成一系列可见光。

And visible light spectroscopy is probably the most important kind of spectroscopy.

而可见光光谱很可能是光谱中最为重要的一类。

Anyone want to take a stab at the scientific term for visible light?

有同学想尝试说一些可见光的科学术语吗?

And I'm sure all of you know this because you all did the reading for today.

我敢肯定你们都已经知道了一些,因为你们今天都已经读了文章了。

Student: Optical radiation.

学生:光辐射。

But I thought being exposed to radiation is dangerous.

但是我觉得暴露在辐射中是有危险的。

Professor: Yes, and no.

教授:你说的对,也不对。

If you are talking about radiation, like in the element Uranium, yeah, that's dangerous.

如果你是说辐射,像铀元素,是的,那就是危险的。

But radiation as a general term actually refers to anything that spreads away from its source.

但是一般来说,辐射事实上指的是那些从物质原散发出来的东西。

So optical radiation is just visible light energy spreading out.

而光辐射只是可见光能源发散出来的而已。

OK, so we've got a spectrum of a beam of sunlight and it looks like the colors bleed into each other.

那么,我们已经得到了一束阳光的光谱,看起来就像是色彩都相互融合起来一样。

There are no interruptions, just a band flowing from violet to green, to yellow, to you get the idea.

色彩之间没有中断迹象,就是一条色带,从紫色到绿色再到黄色。知道吧。

Well, what happens if the sunlight's spectrum is magnified?

那么,如果太阳光谱扩大了会发生什么呢?

Maybe you all didn't do the reading.

也许你们还没有阅读。

Well, here's what you'd see.

嗯,这是你们会看到的。

I want you to know this that this spectrum is interrupted by dark lines called spectral lines.

我要你们知道的是,光谱会被一种叫做光谱线的黑色线条所阻隔。

If you really magnify the spectrum of the sunlight, you could identify more than 100,000 of them.

如果你真的把太阳光线扩大的话,你会分辨出十万多条光谱线。

They may look like kind of randomly placed, but they actually form many distinct patterns.

他们看起来像是随机排列,但是事实上他们组成很多 不同的图案。

And if you were looking at the spectrum of some other star, the colors would be the same.

而如果你观察一下其他星星的光谱,他们的色彩是一样的。

But the spectral lines would break it up at different places, making different patterns.

而光谱线会在不同地方将其分割,形成不同的图案。

Each pattern stands for a distinct chemical element, and so different sets or patterns of spectral lines mean that the star has a different chemical composition.

每一种图案都代表了一种不同的化学元素。所以光谱线的不同组合或图案意味着该星星的化学成分也不同。

Student: So how do we know which spectral patterns match up with which elements?

学生:那么我们怎么知道哪些光谱图案跟哪些化学元素相匹配呢?

Professor: Well, a kind of spectroscopic library of elements was compiled using flame tests.

教授:嗯,我们有一种通过火燃测试收集起来的元素光谱合集。

A known element, say a piece of iron for example, is heated in a pure gas flame.

一种众所周知的元素,比如一块铁,会放在纯粹的气焰中加热。

The iron eventually heats to the point that it radiates light.

铁块会一直加热,直到到达某一燃点,便会辐射出光来。

This light is passed through a prism, which breaks it up into a spectrum.

光线穿过一块棱柱,棱柱将光线分割形成光谱。

And a unique pattern, kind of like a chemical fingerprint of spectral lines for that element appears.

而一种独特的图案便会出现,这种图案就像是某种元素光谱线的化学印记。

This process was repeated over and over again for many different elements, so we can figure out the chemical makeup of another star by comparing the spectral pattern it has to the pattern of the elements in the library.

而很多元素都会经历这样的过程,循环往复。这样我们就可 以通过将某元素的光谱图案和光谱合集中的光谱图案进行比较,我们可以获得其他行星的化学成分。

Oh, an interesting story about how one of the elements was discovered through spectroscopy.

哦,现在讲一个有趣的故事。这是关于我们是怎么通过光谱学发现某一种元素的。

There was a pretty extensive library of spectral line patterns of elements even by the 1860s.

早在十九世纪六十年代的时候,我们便有广泛的关于各元素图案的光谱线合集。

A British astronomer was analyzing a spectrograph of sunlight, and he noticed a particular pattern of spectral lines that didn't match anything in the library.

当时以为英国的天文学家正在分析一道阳光的光谱图,而他注意到了一种特别的光谱线图案,该图案跟合集中的任何材料都不匹配。

So he put two and two together, and decided there was an element in the sun that hadn't been discovered here on the earth yet.

所以他将所有元素两两对应并得出结论,太阳中肯定有一种元素是 在地球上还没发现的。

Any guesses about what that element is?

你们猜得到是什么元素吗?

It actually turned out to be pretty common and I'm sure all of you know it.

事实上,这种元素非常平常,我敢肯定你们都知道。

OK. Let's try something else.

Ok。我们讨论一下一些其他的把。

Any of you happened to be familiar with the Greek word for sun, by chance?

你们中有没有人碰到过希腊语中的太阳一词?

Student: Something like Helius, or something like that.

学生:是不是像Helius或是相类似的。

Oh it must be Helium.

哦,肯定是&Helium(氦)。

So you are saying that Helium was discovered on the sun first.

你的意思是说氦是在太阳上首次发现的?

Professor: Yes, and this is a good example of how important spectroscopy is in astronomy.

教授:是的。光谱线在天文学中很重要,这就是一个很好的例子。

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
题目详解
反馈

题型分析:主旨题

选项分析:

本篇文章中老师没有通过明确的主旨句来告知学生今天课堂上要讲的内容,但是在文章开头老师介绍了spectroscopy是什么科学,并说通过观察光,可以知道star和地球之间的距离以及某些物质的化学成分。接下来的文章就讲了star中的chemical composition,所以正确答案是选项C。

A选项,magnifying the spectrum of a star是细节信息。

B选项,chemical element是细节信息。

D选项,从内容上来看本选项属于无中生有信息。

解锁权益,查看完整解题思路

更多特权
  • 写作范文

  • 题目解析

  • 口语范例

  • 写作批改

  • 10大权益

最低,立即开通

收藏
讨论

上一题

Official 3 Lec 3

下一题

Official 2 Con 1
发送
取消
发表评论
发送

  • 回复
  • 复制
  • 删除

取消