首页 > SAT练习 > OG详解 > OG1 > 详情
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
题目来源:

OG详解-OG1 数学2 Q27

正确答案:289
题目详解
反馈
The correct answer is 289. A quadratic equation of the form  ax2 + bx +c = 0, where a , b, and c are constants, has no real solutions when the value of the discriminant, b-4ac, is less than 0. In the given equation,  x2-34x +c = 0, a = 1 and b =-34. Therefore, the discriminant of the given equation can be expressed as (-34)2 -4(1)(c), or 1,156-4c. It follows that the given equation has no real solutions when 1,156-4c <0. Adding 4c to both sides of this inequality yields 1,156 < 4c. Dividing both sides of this inequality by 4 yields  289 < c , or c >289 . It’s given that the equation x2-34x +c = 0 has no real solutions when c > n. Therefore, the least possible value of n is 289.
0
题目标记:
答对了
答错了
漏选了
收藏
讨论

注:题目来源来自网络

选择你收藏的理由
发送
取消
发表评论
发送

  • 回复
  • 复制
  • 删除

取消