首页 > SAT练习 > OG详解 > OG10 > 详情
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
题目来源:

OG详解-OG10 数学1 Q27

正确答案:29/3
题目详解
反馈
The correct answer is 293. Applying the distributive property to the left-hand side of the given equation, x(x+1)-56, yields x2 +x-56. Applying the distributive property to the right-hand side of the given equation, 4x(x-7), yields 4x2 -28x.  Thus, the equation becomes x2 +x-56 = 4x2 -28x. Combining like terms on the left- and right-hand sides of this equation yields 0 = (4x2 -x2)+(-28x-x)+56,  or 3x2 - 29x+56 = 0. For a quadratic equation in the form ax2 +bx+c = 0, where a, b, and c are constants, the quadratic formula gives the solutions to the equation in the form x = b±b24ac2a . Substituting 3 for a, -29 for b, and 56 for c from the equation 3x2 -29x+56 = 0 into the quadratic formula yields x=(29±(29)24(3)(56))2(3) , or x=296±136. It follows that the solutions to the given equation are 296+136 and 296136. Adding these two solutions gives the sum of the solutions:  296+136+296136 , which is equivalent to 296+296 , or  293 . Note that 29/3, 9.666, and 9.667 are examples of ways to enter a correct answer.
 
0
题目标记:
答对了
答错了
漏选了
收藏
讨论

注:题目来源来自网络

选择你收藏的理由
发送
取消
发表评论
发送

  • 回复
  • 复制
  • 删除

取消