首页 > SAT练习 > OG详解 > OG9 > 详情
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
题目来源:

OG详解-OG9 数学2 Q27

正确答案:50
题目详解
反馈
The correct answer is 50. An equation of the form ax2+bx=c, where a, b, and c are constants, has no real solutions if and only if its discriminant, b2-4ac is negative. Applying the distributive property to the left-hand side of the equation x(kx-56)=16 yields kx2-56x=-16. Adding 16 to each side of this equation yields kx2-56x+16=0. Substituting k for a, -56 for b, and 16 for c in b2-4ac yields a discriminant of (-56)- 4(k)(16) , or 3,136-64k. If the given equation has no real solution, it follows that the value of 3,136-64k must be negative. Therefore, 3 136-64k<0. Adding 64k to both sides of this inequality yields 3,136<64k. Dividing both sides of this inequality by 64 yields 49<k, or k>49. Since it’s given that k is an integer, the least possible value of k is 50. 
0
题目标记:
答对了
答错了
漏选了
收藏
讨论

注:题目来源来自网络

选择你收藏的理由
发送
取消
发表评论
发送

  • 回复
  • 复制
  • 删除

取消