首页 > SAT练习 > OG详解 > OG9 > 详情
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
题目来源:

OG详解-OG9 数学1 Q21

正确答案:-3
题目详解
反馈
The correct answer is -3. Squaring both sides of the given equation yields (x-2)2 = 3x+34, which can be rewritten as x2 -4x+4 = 3x+34. Subtracting 3x and 34 from both sides of this equation yields x2 -7x-30 = 0. This quadratic equation can be rewritten as (x-10)(x+3) = 0. According to the zero product property, (x-10)(x+3) equals zero when either x- 10 = 0 or x+3 = 0. Solving each of these equations for x yields x = 10 or x =-3. Therefore, the given equation has two solutions, 10 and -3. Of these two solutions, -3 is the smallest solution to the given equation.
0
题目标记:
答对了
答错了
漏选了
收藏
讨论

注:题目来源来自网络

选择你收藏的理由
发送
取消
发表评论
发送

  • 回复
  • 复制
  • 删除

取消