首页 > SAT练习 > OG详解 > OG7 > 详情
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
题目来源:

OG详解-OG7 数学2 Q25

正确答案:C
题目详解
反馈
Choice C is correct. It’s given that in the xy-plane, the graph of the given equation is a circle. The equation of a circle in the xy-plane can be written in the form (x-h)2 +(y-k)2 = r2 , where (h, k) is the center of the circle and r is the length of the circle’s radius. Subtracting 6y from both sides of the equation x2 +14x+y2 = 6y+109 yields x2 +14x+y2 -6y = 109.   By completing the square, this equation can be rewritten as (x2 +14x+ (142 )2) + (y2 -6y+ (62 )2) = 109+ (142)2+ (62)2 . This equation can be rewritten as (x2 +14x+49)+(y2 -6y+9) = 109+49+9, or (x+7)2 +(y-3)2 = 167. Therefore, r2 = 167. Taking the square root of both sides of this equation yields r = 167 and r = - 167 . Since r is the length of the circle’s radius, r must be positive. Therefore, the length of the circle’s radius is 167  .
Choice A is incorrect and may result from conceptual or calculation errors. Choice B is incorrect and may result from conceptual or calculation errors. Choice D is incorrect and may result from conceptual or calculation errors.
0
题目标记:
答对了
答错了
漏选了
收藏
讨论

注:题目来源来自网络

选择你收藏的理由
发送
取消
发表评论
发送

  • 回复
  • 复制
  • 删除

取消