首页 > SAT练习 > OG详解 > OG7 > 详情
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
题目来源:

OG详解-OG7 数学1 Q35

正确答案:A
题目详解
反馈
Choice A is correct. For a circle in the xy-plane that has the equation (x-h)2 +(y-k)2 = r2, where h, k, and r are constants, (h, k) is the center of the circle and the positive value of r is the radius of the circle. In the given equation,  h = 13 and r2 = 64. Taking the square root of each side of r2 = 64 yields r = ±8.  Therefore, the center of the circle is at (13, k) and the radius is 8.
Choice B is incorrect. This gives the center and radius of a circle with equation  (x-k)2 +(y-13)2 = 64, not (x-13)2 +(y-k)2 = 64. Choice C is incorrect. This gives the center and radius of a circle with equation (x-k)2 +(y-13)2 = 4,096, not (x-13)2 +(y-k)2 = 64. Choice D is incorrect. This gives the center and radius of a circle with equation (x-13)2 +(y-k)2 = 4,096, not (x-13)2 +(y-k)2 = 64.
0
题目标记:
答对了
答错了
漏选了
收藏
讨论

注:题目来源来自网络

选择你收藏的理由
发送
取消
发表评论
发送

  • 回复
  • 复制
  • 删除

取消