首页 > SAT练习 > OG详解 > OG4 > 详情
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
题目来源:

OG详解-OG4 数学2 Q21

正确答案:51
题目详解
反馈
The correct answer is 51. A quadratic equation of the form ax2  + bx +c = 0, where a, b, and c are constants, has no real solution if and only if its discriminant, -4ac + b2 , is negative. In the given equation, a =-1 and c =-676. Substituting -1 for a and -676 for c in this expression yields a discriminant of b2 -4(-1)(-676), or b2 -2,704. Since this value must be negative, b2 -2,704 <0, or b2 < 2,704. Taking the positive square root of each side of this inequality yields b <52. Since b is a positive integer, and the greatest integerl ess than 52  is 51, the greatest possible value of b is 51.
0
题目标记:
答对了
答错了
漏选了
收藏
讨论

注:题目来源来自网络

选择你收藏的理由
发送
取消
发表评论
发送

  • 回复
  • 复制
  • 删除

取消