首页 > SAT练习 > OG详解 > OG4 > 详情
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
题目来源:

OG详解-OG4 数学1 Q23

正确答案:D
题目详解
反馈
Choice D is correct. It’s given that 4x2 + bx -45 can be rewritten as (hx + k)(x + j). The expression (hx + k )(x + j) can be rewritten as hx2 + jhx + kx + kj , or hx2 +( jh + k )x + kj . Therefore, hx2 +( jh + k )x + kj is equivalent to 4x2 + bx -45. It follows that kj =-45. Dividing each side of this equation by k yields j = 45k. Since j is an integer, - 45k must be an integer. Therefore,  45k must also be an integer.
Choice A is incorrect and may result from conceptual or calculation errors. 
Choice B is incorrect and may result from conceptual or calculation errors. 
Choice C is incorrect and may result from conceptual or calculation errors.
0
题目标记:
答对了
答错了
漏选了
收藏
讨论

注:题目来源来自网络

选择你收藏的理由
发送
取消
发表评论
发送

  • 回复
  • 复制
  • 删除

取消