2020.08.11 15:40
提到雅思备考,我们最先想到的就是剑桥雅思真题,剑桥雅思真题作为雅思备考中的热门教材,一直以来深受广大考生追捧。今天新东方在线小编就给大家整理了剑14Test2雅思阅读原文+题目+答案:Passage 2,希望能都帮助大家更好的备考雅思考试,更多剑桥雅思真题原文、题目及答案解析相关内容,欢迎随时关注新东方在线雅思网。
关注微信公众号,回复【剑14】,获取完整资料!
READING PASSAGE 2
You should spend about 20 minutes on Questions 14-26, which are based on Reading Passage 2 below.
Back to the future of skyscraper design
Answers to the problem of excessive electricity use by skyscrapers
and large public buildings can be found in ingenious but forgotten
architectural designs of the 19th and early-20th centuries
A The Recovery of Natural Environments in Architecture by Professor Alan Short is the culmination of 30 years of research and award-winning green building design by Short and colleagues in Architecture, Engineering, Applied Maths and Earth Sciences at the University of Cambridge.
'The crisis in building design is already here.' said Short. 'Policy makers think you can solve Energy and building problems with gadgets. You can't. As global temperatures continue to rise, we are going to continue to squander more and more energy on keeping our buildings mechanically cool until we have run out of capacity.'
B Short is calling for a sweeping reinvention of how skyscrapers and major public buildings are designed - to end the reliance on sealed buildings which exist solely via the 'life support' system of vast air conditioning units.
Instead, he shows it is entirely possible to accommodate natural ventilation and cooling in large buildings by looking into the past, before the widespread introduction of air conditioning systems, which were 'relentlessly and aggressively marketed' by their inventors.
C Short points out that to make most contemporary buildings habitable, they have to be sealed and air conditioned. The energy use and carbon emissions this generates is spectacular and largely unnecessary. Buildings in the West account for 40-50% of electricity usage, generating substantial carbon emissions, and the rest of the world is catching up at a frightening rate. Short regards glass, steel and air-conditioned skyscrapers as symbols of status, rather than practical ways of meeting our requirements.
D Short's book highlights a developing and sophisticated art and science of ventilating buildings through the 19th and earlier-20th centuries, including the design of ingeniously ventilated hospitals. Of particular interest were those built to the designs of John Shaw Billings, including the first Johns Hopkins Hospital in the US city of Baltimore (1873-1889).
'We spent three years digitally modelling Billings' final designs,' says Short. 'We put pathogens* in the airstreams, modelled for someone with tuberculosis (TB) coughing in the wards and we found the ventilation systems in the room would have kept other patients safe from harm.
* pathogens: microorganisms that can cause disease
E 'We discovered that 19th-century hospital wards could generate up to 24 air changes an hour - that's similar to the performance of a modern-day, computer-controlled operating theatre. We believe you could build wards based on these principles now.
Single rooms are not appropriate for all patients. Communal wards appropriate for certain patients - older people with dementia, for example - would work just as well in today's hospitals, at a fraction of the energy cost.'
Professor Short contends the mindset and skill-sets behind these designs have been completely lost, lamenting the disappearance of expertly designed theatres, opera houses, and other buildings where up to half the volume of the building was given over to ensuring everyone got fresh air.
F Much of the ingenuity present in 19th-century hospital and building design was driven by a panicked public clamouring for buildings that could protect against what was thought to be the lethal threat of miasmas - toxic air that spread disease. Miasmas were feared as the principal agents of disease and epidemics for centuries, and were used to explain the spread of infection from the Middle Ages right through to the cholera outbreaks in London and Paris during the 1850s. Foul air, rather than germs, was believed to be the main driver of 'hospital fever', leading to disease and frequent death. The prosperous steered clear of hospitals.
While miasma theory has been long since disproved, Short has for the last 30 years advocated a return to some of the building design principles produced in its wake.
G Today, huge amounts of a building's space and construction cost are given over to air conditioning. 'But I have designed and built a series of buildings over the past three decades which have tried to reinvent some of these ideas and then measure what happens.
'To go forward into our new low-energy, low-carbon future, we would be well advised to look back at design before our high-energy, high-carbon present appeared. What is surprising is what a rich legacy we have abandoned.'
H Successful examples of Short's approach include the Queen's Building at De Montfort University in Leicester. Containing as many as 2,000 staff and students, the entire building is naturally ventilated, passively cooled and naturally lit, including the two largest auditoria, each seating more than 150 people. The award-winning building uses a fraction of the electricity of comparable buildings in the UK.
Short contends that glass skyscrapers in London and around the world will become a liability over the next 20 or 30 years if climate modelling predictions and energy price rises come to pass as expected.
I He is convinced that sufficiently cooled skyscrapers using the natural environment can be produced in almost any climate. He and his team have worked on hybrid buildings in the harsh climates of Beijing and Chicago - built with natural ventilation assisted by back-up air conditioning - which, surprisingly perhaps, can be switched off more than half the time on milder days and during the spring and autumn.
Short looks at how we might reimagine the cities, offices and homes of the future. Maybe it's time we changed our outlook.
Questions 14-18
Reading Passage 2 has nine sections, A-I.
Which section contains the following information?
Write the correct letter, A-I, in boxes 14-18 on your answer sheet.
14 why some people avoided hospitals in the 19th century
15 a suggestion that the popularity of tall buildings is linked to prestige
16 a comparison between the circulation of air in a 19th-century building and modern standards
17 how Short tested the circulation of air in a 19th-century building
18 an implication that advertising led to the large increase in the use of air conditioning
Questions 19-26
Complete the summary below.
Choose ONE WORD ONLY from the passage for each answer.
Write your answers in boxes t9-26 on your answer sheet.
Ventilation in 19th-century hospital wards
Professor Alan Short examined the work of John Shaw Billings, who influenced the architectural 19 ________ of hospitals to ensure they had good ventilation. He calculated that 20 ________ in the air coming from patients suffering from 21 ________ would not have harmed other patients. He also found that the air in 22 ________ in hospitals could change as often as in a modern operating theatre. He suggests that energy use could be reduced by locating more patients in 23 ________ areas.
A major reason for improving ventilation in 19th-century hospitals was the demand from the 24 ________ for protection against bad air, known as 25 ________ . These were blamed for the spread of disease for hundreds of years, including epidemics of 26 ________ in London and Paris in the middle of the 19th century.
Reading Passage 2, Questions 14-26
14 F
15 C
16 E
17 D
18 B
19 design(s)
20 pathogens
21 tuberculosis
22 wards
23 communal
24 public
25 miasmas
26 cholera
以上就是小编为烤鸭们整理的“剑14Test2雅思阅读原文+题目+答案:Passage 2”的全部内容,希望同学们能够认真学习剑桥雅思真题,早日和雅思说分手,更多剑桥雅思真题相关备考材料内容,欢迎随时关注新东方在线雅思网。
免费获取最新雅思口语题库
扫码添加助教号
免费获取雅思口语题库