2020.07.27 09:48
【题】 如右图 ,用函数法证明1/u+1/v=1/f。
【解】右图为凸透镜成像示意图。
其中c为成像的物体长度,d为物体成的像的长度。u为物距,v为像距,f为焦距。
步骤
(一)为便于用函数法解决此问题,将凸透镜的主光轴与平面直角坐标系的横坐标轴(x轴)关联(即重合),将凸透镜的理想折射面与纵坐标轴(y轴)关联,将凸透镜的光心与坐标原点关联。则:点A的坐标为(-u,c),点F的坐标为(f,0),点A'的坐标为(v,-d),点C的坐标为(0,c)。
(二)将AA’,A'C双向延长为直线l1,l2,视作两条函数图象。由图象可知:直线l1为正比例函数图象,直线l2为一次函数图象。
(三)设直线l1的解析式为y=k1x,直线l2的解析式为y=k2x+b
依题意,将A(-u,c),C(0,c),F(f,0)代入相应解析式得方程组:
c=-u·k1
c=b
0=k2f+b
把k1,k2当成未知数解之得:
k1=-(c/u), k2=-(c/f)
∴两函数解析式为:
y=-(c/u)x, y=-(c/f)x+c
∴两函数交点A'的坐标(x,y)符合方程组
y=-(c/u)x
y=-(c/f)x+c
∵A'(v,-d)
∴代入得:
-d=-(c/u)v
-d=-(c/f)v+c
∴-(c/u)v=-(c/f)v+c=-d
∴(c/u)v=(c/f)v-c=d
cv/u=(cv/f)-c
fcv=ucv-ucf
fv=uv-uf
∵uvf≠0
∴fv/uvf=(uv/uvf)-(uf/uvf)
∴1/u=1/f-1/v
即:1/u+1/v=1/f
资深教师+1对1定制教学
微信扫码关注
免费领取全科预习资料包