2018.08.13 10:15
新东方在线中考网整理了《2019中考数学复习资料:试题之等腰三角形的性质》,供同学们参考。
等腰三角形的性质
分析: 先根据等腰三角形的性质求出∠ADB的度数,再由平角的定义得出∠ADC的度数,根据等腰三角形的性质即可得出结论.
解答: 解:∵△ABD中,AB=AD,∠B=80°,
∴∠B=∠ADB=80°,
∴∠ADC=180°﹣∠ADB=100°,
∵AD=CD,
∴∠C= = =40°.
故选B.
点评: 本题考查的是等腰三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.
4.(2014•福建福州,第6题4分)下列命题中,假命题是【 】
A.对顶角相等 B.三角形两边和小于第三边
C.菱形的四条边都相等 D.多边形的内角和等于360°
5.(2014•台湾,第20题3分)如图,有一△ABC,今以B为圆心,AB长为半径画弧,交BC于D点,以C为圆心,AC长为半径画弧,交BC于E点.若∠B=40°,∠C=36°,则关于AD、AE、BE、CD的大小关系,下列何者正确?( )
A.AD=AE B.AE
分析:由∠C<∠B利用大角对大边得到AB
解:∵∠C<∠B,
∴AB
即BE+ED
∴BE
故选D.
点评:考查了三角形的三边关系,解题的关键是正确的理解题意,了解大边对大角.
6.(2014•云南昆明,第5题3分)如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC的度数是( )
A. 85° B. 80°
C. 75° D. 70°
考点: 角平分线的性质,三角形外角性质.
分析: 首先角平分线的性质求得 的度数,然后利用三角形外角性质求得∠BDC的度数即可.
解答: 解: ∠ABC=70°,BD平分∠ABC
∠A=50°
∠BDC
故选A.
点评: 本题考查了三角形角平分线的性质和三角形外角性质.,属于基础题,比较简单.
7. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )
A. 1,2,3 B. 1,1, C. 1,1, D. 1,2,
相关链接
资深教师+1对1定制教学
微信扫码关注
免费领取全科预习资料包