2017.04.25 17:09
新东方在线小学网整理了2017小学趣味数学故事赏析,仅供参考。更多内容请关注新东方在线小学网。
2017小学趣味数学故事:彻底解决“四色问题”
地图“四色问题”(又称“四色猜想”)最早由英国大学生法兰西斯·古特里(Francis Guthrie)于1852年在绘制地图时发现,他却找不出科学肯定的证明就去请教他在伦敦大学读书的哥哥费特里克·古特里(Frederick Guthrie)。兄弟俩搞了好些日子还是证明不了,就由哥哥去向伦敦大学的老师、当时非常著名的数学家奥古斯都·德·摩根(Augustus de morgan)请教,摩根教授当时也证明不了,就至函他在三一学院的好友——著名数学家威廉·哈密尔顿(William Rowan Hamilton),希望他能帮助证明。可哈密尔顿对这个问题研究了十三年,到死也没能给出证明。自从1879年至今全世界不断有人提出证明了“四色问题”,可是都叫人难以信服,不断又被别人否定,至今这个“四色问题”仍与“哥德巴赫猜想”及“费马最后定律”一起被全世界公认为数学史上最著名的三大难题。
本人2004年夏天刚接触到“拓扑学”,试着用“拓扑学”的方法去分析“四色问题”,只化半小时左右时间就证明了“四色问题”。我写的《关于“四色问题”的证明》(以下简称《证明》,可在电脑中文搜索栏打入“四色问题”或作者姓名“焦永溢”查看)2004年底在许多数学网站上刊登出来后,看了的人很多认为非常正确;但也有一部分不明白的人认为证明了“相互间有连线的点不多于四个”并不是证明了“四色问题”,他们认为四点相互间有连线只是平面图上的局部现象,不能代表整个平面图,还提出比如中间一个点周围五个点的图形并没有四个点之间相互有连线却也要四种颜色。可我在这里要再强调一下:《证明》中三个定理概括讲就是“三点必闭,四点必围,五点必断”,并没有说一定要四点相互间有连线才需四色,证明“四色问题”关键在于“五色必断”。《证明》中分析了第五点E落在封闭图形ABC以内及以外的情况,也提到了第五点若落在连线上必定会隔断这条连线,只是没有把隔断的情况用图画出来,其实一画出来也是与另两种情况一样:三点包围一点,另一点又被小的封闭图形所包围。下面我再从第五点开始,接着第六点、第七点、第八点……直到无穷多点的情况下证明“四色永远足够”。
为了使分析的图形更直观明了,可以换一个角度来看四点相互间有连线的图形:把封闭图形放在球面上,各点间距离均匀,拉直各条连线,图形就成了一个正三棱锥。图1就是把ABC面当底,D点当顶点从上向下的俯视图,若把三棱锥翻一个面,比如将B点当顶点,ACD面就成了底面,所以外面三条线其实与里面三条线是一样的,图形的外面实际上就是三棱锥的底面,三棱锥的底面与三个侧面其实也是一样的。这样任何第五点只有放在三个小三角形(侧面)中间及里面三条连线(棱线)上两种情况。
当第五点放在任一小三角形中间,显而易见这点只能与周围的三个点有连线(如图1中E点),并且又把小三角形分隔成三个更小的三角形,这样只要第六点、第七点……一直到任意多点都落在三角形中间,每一点都只能与包围它的三点有连线,所以无论有多少个点“四色足够”。
小学1-6年级期中复习资料
微信扫码关注
免费领取2022小初高全科资料