考对于考生来说,院校自命题考研大纲是了解考试要求、指导复习的重要依据。考生应根据大纲的要求,有针对性地进行复习,并结合自身的兴趣和特长,做好专业选择和备考规划。小编在这里为大家整理了“中国地质大学(武汉)2025自命题考研大纲:解析几何与高等代数”,供大家参考。
第一部分 考试说明
一、考试性质
空间解析几何与高等代数是为全国硕士研究生入学考试数学系各专业设置的课程,它的评价标准是高等学校优秀本科毕业生能达到及格及以上水平。
二、考试范围
多项式理论、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、欧氏空间、以及平面与空间直线、空间曲线与二次曲面。
三、考试形式与试卷结构
(一)答卷方式:闭卷,笔试;所列题目全部为必答题。
(二)答题时间:180分钟。
(三)各部分的考查比例:
高等代数部分约80%,
空间解析几何部分约20%.
(四)题型类型
计算题和证明题
第二部分 考查要点
一、多项式理论
理解数域P上一元多项式的定义、多项式相乘、次数、一元多项式环等概念,整除的定义,两个(或若干个)多项式的最大公因式,互素等概念及性质,不可约多项式的定义及性质,多项式与多项式函数的关系,代数基本定理,有理系数多项式的分解与整系数多项式分解的关系,多元多项式、对称多项式的定义。
掌握多项式的运算及运算律,能用辗转相除法求两个多项式的最大公因式,理解不可约多项式的定义及性质,标准分解式,k重因式,多项式函数的概念、余数定理、多项式的根及性质,对称多项式基本定理。
了解带余除法及整除的性质,因式分解及唯一性定理,复(实)系数多项式分解定理及标准分解式,本原多项式的定义、高斯(Gauss)引理、整系数多项式的有理根的性质、爱森斯坦(Eisenstein)判别法。
二、行列式
1、理解行列式的概念,掌握行列式的性质,拉普拉斯(Laplace)定理及行列式的乘法法则。
2、会应用行列式概念和基本性质计算行列式,能够熟练掌握行列式按行(列)展开定理,能够运用递推公式计算一些经典类型的行列式。
三、线性方程组
1、理解n维向量、向量的线性组合与线性表示等概念。
2、理解向量组线性相关、线性无关的定义、熟练掌握判断向量组线性相关、线性无关的方法。
3、理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩。
4、理解向量组等价的概念、向量组的秩与矩阵秩的关系。
5、会用克莱姆(Cramer)法则求解线性方程组。
6、掌握齐次线性方程组与非齐次线性方程组的解的判定定理
7、熟练掌握齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法。
8、掌握非齐次线性方程组解的结构及通解的概念及求法。
9、掌握用初等行变换求解线性方程组的方法。
四、矩阵
1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,熟悉它们的基本性质。
2、掌握矩阵的数乘、加法、乘法、转置等运算。了解方阵的多项式概念。
3、理解逆矩阵的概念,掌握可逆矩阵的性质,以及矩阵可逆的判别条件,理解伴随矩阵的概念和性质,会用伴随矩阵求逆矩阵。
4、掌握矩阵的初等变换、初等矩阵的性质和矩阵等价的条件,理解矩阵的秩的概念,了解矩阵的秩与行列式的关系。了解矩阵乘积的秩与因子矩阵的秩的关系,了解n阶方阵非退化的概念及充分必要条件,熟练掌握用初等变换求矩阵的秩和逆矩阵的方法。
5、熟悉分块矩阵及分块初等变换的概念和性质。
五、二次型
1、掌握二次型及其矩阵表示,理解非退化线性替换与矩阵合同的概念及性质,清楚二次型的非退化线性替换与二次型矩阵合同的关系。
2、熟练掌握二次型的标准形、秩、规范形的概念以及惯性定理,理解复对称矩阵合同的充分必要条件。
3、会用配方法化二次型为标准形。
4、掌握二次型及实对称矩阵正定的概念及性质,掌握二次型及实对称矩阵正定的判别法。
六、线性空间
1、熟悉集合与映射的概念。
2、理解线性空间的概念掌握线性子空间的判定方法。
3、掌握线性空间的维数、基和坐标等基本概念和性质。
4、掌握线性空间的基变换公式和坐标变换与过渡矩阵的关系。
5、理解生成子空间的概念,掌握求子空间基和维数的方法。
6、掌握子空间的交、和、直和运算及其性质。
七、线性变换
1、掌握线性变换的概念、基本性质及运算。
2、理解线性变换的矩阵,了解线性变换与矩阵的对应关系。
3、掌握线性变换及其矩阵的特征值、特征向量、特征多项式的概念及性质,能够熟练地求解线性变换及矩阵的特征值和特征向量。
4、了解关于特征多项式的哈密尔顿-凯莱(Hamilton-Caylay)定理,了解矩阵的迹。
5、把握线性变换的特征子空间、线性变换的不变子空间的概念。
6、掌握矩阵相似的概念、性质及矩阵可对角化的充分必要条件。熟悉将矩阵和线性变换对角化的方法。
7、理解线性变换的值域、核、秩、零度的概念,并掌握求线性变换的值域与核的基和维数的方法。
8、掌握矩阵的若当(Jordan)标准型和最小多项式的概念和理论。
八、欧氏空间
1、掌握线性空间内积、向量的正交、欧几里德空间等基本概念及性质。
2、理解正交变换和正交矩阵的关系,欧几里德空间中过渡矩阵的特殊性。
3、理解和掌握标准(规范)正交基的概念,掌握标准(规范)正交基的求法(施密特(Schimidt)正交化过程),了解标准正交基下度量矩阵、向量坐标及内积的特殊表达。
4、掌握正交矩阵的概念及性质,了解正交矩阵与标准正交基的过渡矩阵之间的关系。
5、理解和掌握正交变换、对称变换的概念及其性质,了解正交变换和正交矩阵,对称变换与对称矩阵之间的关系。
6、理解正交子空间、正交补的概念及性质。
7、熟练掌握对称矩阵的特征值和特征向量的特殊性质,对给定的实对称矩阵A会求正交矩阵T使T′AT成为对角矩阵。
九、λ-矩阵
1、熟练掌握λ-矩阵的基本理论,会求λ-矩阵的标准形、 行列式因子、不变因子、初等因子。
2、掌握矩阵相似的条件,并能利用λ矩阵理论解决若当标准形的问题。
十、平面与空间直线
1、熟练掌握向量代数中的各种运算。
2、熟练掌握平面与空间直线方程的各种形式,能根据已知条件建立平面与空间直线的方程
3、熟悉判定点与平面、空间两直线、直线与平面的位置关系
4、熟练计算两直线 、直线与平面、两平面间的交角、两异面直线的距离及公垂线方程。
十一、空间曲线与二次曲面
1、要求考生熟练掌握曲面与曲线的定义,空间曲线的投影与投影柱面。
2、掌握常见的二次曲面的标准方程、形状、作图及单叶双曲面、双曲抛物面的直母线方程及其性质。
3、掌握直线与一般二次曲线相交,并对一般二次曲线进行理论研究的方法,根据二次曲线标准方程将二次曲线分类,从而使二次曲线的几何理论与代数理论自然联系在一起,达到用代数方法研究几何理论的目的。
原标题:数理学院2025年硕士研究生入学考试初试复试考试大纲见附件
文章来源:https://slxy.cug.edu.cn/info/1034/7490.htm