为了让考研的同学更高效地复习考研数学,新东方在线考研频道归纳整理了“2024考研数学概率论复习参数估计的复习”,备考考研数学的同学可以了解一下,希望对大家有所帮助。
2024考研数学概率论复习参数估计的复习
参数估计这章,数一和数三公共考点为点估计,包括矩估计和极大似然估计,另外数一还考查区间估计,包括单个正态总体的均值和方差的区间估计、两个正态总体的均值差和方差比的区间估计。
本章考研主要题型为:
(1)参数的点估计:矩估计、极大似然估计估计量的评选标准(数一考查)
(2)参数的区间估计:正态总体的区间估计(数一考查)
矩估计的基本思想:由大数定律可知样本矩、样本矩的连续函数依概率收敛于相应的总体矩、总体矩的连续函数,由此可建立总体分布中未知参数满足的方程(组),解之可得总体未知参数的点估计。这种构造点估计量的方法称为矩估计法,求得的点估计称为矩估计量(值)其方法步骤如下:
1.构建未知参数的方程,通过总体的原点矩来构造。
2.解方程,解出未知参数。
3.用样本矩代替总体矩,得未知参数的矩估计量(值)。
极大似然估计法的基本思想:样本发生的可能性最大原则——即对未知参数进行估计时,在未知参数的变化范围内选取使“样本取此观测值”的概率最大的参数值作为未知参数的点估计。这样得到的矩估计值为最大似然估计值,相应的量为最大似然估计量。其方法步骤为:“造似然”求导数,找驻点得估计。
1.构造自然函数,注意,离散总体和连续总体的似然函数不同。
2.取对数。
3.求导数找驻点得估计。
注意,若似然方程无解,则必有导数大于或小于零,此时只要在未知参数的变化范围内找其右边界点或左边界点即可。
估计量的评选标准:无偏性、有效性、一致性,掌握其概念即可。无偏估计考查较多。
参数的区间估计:了解区间估计概念、掌握求置信区间的方法。求置信区间的一般方法步骤为:
第一步,选枢轴量定分布;
第二步,造大概率事件得不等式;
第三步,解不等式得置信区间。
以上是新东方在线考研频道为考生整理的“ 2024考研数学概率论复习参数估计的复习”相关内容,希望对大家有帮助,新东方在线考研频道小编预祝大家都能取得好成绩。