2024考研数学概率论复习参数估计的复习
2023.12.13 07:44

  为了让考研的同学更高效地复习考研数学,新东方在线考研频道归纳整理了“2024考研数学概率论复习参数估计的复习”,备考考研数学的同学可以了解一下,希望对大家有所帮助。

2024考研数学概率论复习参数估计的复习

  参数估计这章,数一和数三公共考点为点估计,包括矩估计和极大似然估计,另外数一还考查区间估计,包括单个正态总体的均值和方差的区间估计、两个正态总体的均值差和方差比的区间估计。

  本章考研主要题型为:

  (1)参数的点估计:矩估计、极大似然估计估计量的评选标准(数一考查)

  (2)参数的区间估计:正态总体的区间估计(数一考查)

  矩估计的基本思想:由大数定律可知样本矩、样本矩的连续函数依概率收敛于相应的总体矩、总体矩的连续函数,由此可建立总体分布中未知参数满足的方程(组),解之可得总体未知参数的点估计。这种构造点估计量的方法称为矩估计法,求得的点估计称为矩估计量(值)其方法步骤如下:

  1.构建未知参数的方程,通过总体的原点矩来构造。

  2.解方程,解出未知参数。

  3.用样本矩代替总体矩,得未知参数的矩估计量(值)。

  极大似然估计法的基本思想:样本发生的可能性最大原则——即对未知参数进行估计时,在未知参数的变化范围内选取使“样本取此观测值”的概率最大的参数值作为未知参数的点估计。这样得到的矩估计值为最大似然估计值,相应的量为最大似然估计量。其方法步骤为:“造似然”求导数,找驻点得估计。

  1.构造自然函数,注意,离散总体和连续总体的似然函数不同。

  2.取对数。

  3.求导数找驻点得估计。

  注意,若似然方程无解,则必有导数大于或小于零,此时只要在未知参数的变化范围内找其右边界点或左边界点即可。

  估计量的评选标准:无偏性、有效性、一致性,掌握其概念即可。无偏估计考查较多。

  参数的区间估计:了解区间估计概念、掌握求置信区间的方法。求置信区间的一般方法步骤为:

  第一步,选枢轴量定分布;

  第二步,造大概率事件得不等式;

  第三步,解不等式得置信区间。

  以上是新东方在线考研频道为考生整理的“ 2024考研数学概率论复习参数估计的复习”相关内容,希望对大家有帮助,新东方在线考研频道小编预祝大家都能取得好成绩。

MORE+

    相关阅读 MORE+

    版权及免责声明
    1.凡本网注明"稿件来源:新东方在线"的所有文字、图片和音视频稿件,版权均属北京新东方迅程网络科技有限公司所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方在线",违者本网将依法追究责任。
    2.本网末注明"稿件来源:新东方在线"的文/图等稿件均为转载稿,本网转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方在线”,本网将依法追究责任。
    3.如本网转载稿涉及版权等问题,请作者致信weisen@xdfzx.com,我们将及时外理

    Copyright © 2011-202

    All Rights Reserved