公共管理硕士也是专硕考试的热门专业,尤其是近几年考MPA的人越来越多,为了帮助大家能更好的进行备考,小编为大家整理了“2024年MPA复习:单纯形法的进一步使用 相关信息供大家参考,希望对大家有所帮助。
2024年MPA复习:单纯形法的进一步使用
一、 目标函数值最小的问题(min型)
有三种处理方式,可以选择任何一种:
(1)在第2.1.3节中介绍过,将求目标函数值最小的问题转化为求目标函数值最大问题。如果目标函数是min z =∑cjxj的形式,可令z=-z′,这样就将目标函数转化为max z′ =-∑cjxj,然后用单纯形法求解即可。
(2)保持目标函数的min型不变,通过检验数的判断来处理。最优解的判断方法和max型的相反,即全部检验数cj-zj≥0时就达到最优,否则继续迭代;另外,换入变量的确定方法是选取检验数最小的非基变量作为换入变量,确定换出变量的方法与max型的方法一样。
(3)将单纯形表中检验数的形式改变。即将单纯形表中的检验数cj-zj改写为zj-cj的形式,最优解的判断方法、换入变量的确定和换出变量的确定与max型的方法相同。
二 约束条件方程为“≥”型
将“≥”型的约束条件方程左边减去多余变量即可转化为“=”型的约束条件方程。
同时知道,确定初始基本可行解的方法是将单位矩阵所对应的变量作为基变量,但多余变量的系数是-1,不能构成单位矩阵,即不能将多余变量作为初始基变量。如果在变化后的约束条件方程组的矩阵中寻找不到单位矩阵,解决的方法就是:
通过人为构造变量来生成单位矩阵,把人为构造的变量称为人工变量。为了不使人工变量对目标函数值产生影响,在求目标函数最大或最小的问题中,人工变量的cj值分别设为充分小或充分大的数即-M或M,这样,人工变量进入最优解的可能性很小。
对偶单纯形法
三 两阶段法求解思路
(1)第一阶段:构造新目标函数代替实际目标函数,用单纯形法求解。
若目标函数是max型,设人工变量的目标函数系数cj=-1,其余变量的目标函数系数cj=0;
若目标函数是min型,设人工变量的目标函数系数cj=1,其余变量的目标函数系数cj=0;(计算出来无最优解:cj-zj>0,aij<0)
(2)第二阶段:恢复原来的目标函数,继续用单纯形法求解。
恢复原来目标函数的步骤是:
A、将第一阶段最优单纯形表中人工变量的列去掉;
B、恢复原来的目标函数的系数;
C、重新计算检验数,并继续用单纯形法求解。
四 约束条件方程为“=”型
有两种处理方式,可以选择任何一种:
(1)在约束条件方程中加入人工变量,使系数矩阵能构成一个单位矩阵,再用大M法或两阶段法求解。
(2)将等式变为两个非等式,如x1+2x2=10可以用x1+2x2≤10和x1+2x2≥10两个不等式来代替,这样变化后,可以在这两个方程中分别加进松弛变量、减去多余变量或者加入人工变量,再按照前面的方法求解即可。
以上是为大家整理的“2024年MPA复习:单纯形法的进一步使用”,预祝大家都能考出理想成绩!