2022年考研数学概率复习重点归纳
2021.05.17 07:04

                         2022年考研数学概率复习重点归纳

  2022考研的考生现在已经进入基础备考阶段啦!一个良好的起跑点对于后期的复习备考至关重要,考研数学栏目为各位考生提供相关考研备战常识与资料,希望能对各位2022考研的考生有所帮助,一起来看哦。

  一、随机事件与概率

  重点难点:

  重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式

  难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算

  常考题型:

  (1)事件关系与概率的性质

  (2)古典概型与几何概型

  (3)乘法公式和条件概率公式

  (4)全概率公式和Bayes公式

  (5)事件的独立性

  (6)贝努利概型

  二、随机变量及其分布

  重点难点

  重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布

  难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布

  常考题型

  (1)分布函数的概念及其性质

  (2)求随机变量的分布律、分布函数

  (3)利用常见分布计算概率

  (4)常见分布的逆问题

  (5)随机变量函数的分布

  三、多维随机变量及其分布

  重点难点

  重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布

  难点:多维随机变量的描述方法、两个随机变量函数的分布的求解

  常考题型

  (1)二维离散型随机变量的联合分布、边缘分布和条件分布

  (2)二维离散型随机变量的联合分布、边缘分布和条件分布

  (3)二维随机变量函数的分布

  (4)二维随机变量取值的概率计算

  (5)随机变量的独立性

  四、随机变量的数字特征

  重点难点

  重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数

  难点:各种数字特征的概念及算法

  常考题型

  (1)数学期望与方差的计算

  (2)一维随机变量函数的期望与方差

  (3)二维随机变量函数的期望与方差

  (4)协方差与相关系数的计算

  (5)随机变量的独立性与不相关性

  五、大数定律和中心极限定理

  重点难点

  重点:中心极限定理

  难点:切比雪夫不等式、依概率收敛的概念。

  常考题型

  (1)大数定理

  (2)中心极限定理

  (3)切比雪夫(Chebyshev)不等式

  六、数理统计的基本概念

  重点难点

  重点:样本函数与统计量,样本分布函数和样本矩

  难点:抽样分布

  常考题型

  (1)正态总体的抽样分布

  (2)求统计量的数字特征

  (3)求统计量的分布或取值的概率

  七、参数估计

  重点难点

  重点:矩估计法、最大似然估计法、置信区间及单侧置信区间

  难点:估计量的评价标准

  常考题型

  (1)求参数的矩估计和最大似然估计

  (2)估计量的评价标准(数学一)

  (3)正态总体参数的区间估计(数学一)

  八、假设检验(数学一)

  重点难点

  重点:单个正态总体的均值和方差的假设检验

  难点:假设检验的原理及方法

  常考题型

  (1)单正态总体均值的假设检验

  以上是新东方在线考研为考生整理的“2022年考研数学概率复习重点归纳”的相关内容,希望对大家有帮助,更多考研数学复习信息尽在新东方在线考研数学频道!


MORE+

    相关阅读 MORE+

    版权及免责声明
    1.凡本网注明"稿件来源:新东方在线"的所有文字、图片和音视频稿件,版权均属北京新东方迅程网络科技有限公司所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方在线",违者本网将依法追究责任。
    2.本网末注明"稿件来源:新东方在线"的文/图等稿件均为转载稿,本网转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方在线”,本网将依法追究责任。
    3.如本网转载稿涉及版权等问题,请作者致信weisen@xdfzx.com,我们将及时外理

    Copyright © 2011-202

    All Rights Reserved