考研数学概率论是考研数学中的重要部分,掌握好考研数学概率论可以使考研数学成绩大大提升。新东方在线考研频道为大家整理了“2022年考研数学概率论与数理统计:回归分析”,帮助考研人提升考研复习效率。
2022年考研数学概率论:回归分析
1.直线回归:如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,则直线回归(单个自变量的线性回归,称为简单回归),否则应作适当的变换,使其满足上述条件。
2.多重线性回归:应变量(Y)为连续型变量(即计量资料),自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。如果回归分析中的残差服从正态分布(大样本时无需正态性),残差与自变量无趋势变化,可以作多重线性回归。
1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
3.二分类的Logistic回归:应变量为二分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。
1)非配对的情况:用非条件Logistic回归
(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
2)配对的情况:用条件Logistic回归
(1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
(2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
4.有序多分类有序的Logistic回归:应变量为有序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。
1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
5.无序多分类有序的Logistic回归:应变量为无序多分类变量,自变量(X1,X2,…,Xp)可以为连续型变量、有序分类变量或二分类变量。
1)观察性研究:可以用逐步线性回归寻找(拟)主要的影响因素
2)实验性研究:在保持主要研究因素变量(干预变量)外,可以适当地引入一些其它可能的混杂因素变量,以校正这些混杂因素对结果的混杂作用
以上就是为考研人分享的:“2022年考研数学概率论与数理统计:回归分析”希望能为大家带来帮助,预祝大家考研成功。更多考研数学概率论知识可以关注新东方在线考研频道。