微分中值定理是微分学应用的理论基础。是研究函数的有力工具,其中最重要的内容是拉格朗日定理,可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广。能熟练的应用中值定理确实是一件不易的事,尤其是辅助函数的引入,更是变化多样。下文给出微分中值定理在一些证明题中的巧用。
一、微分中值定理的主要应用
1. 证明等式;2. 证明恒等式;3. 证明不等式; 4. 讨论方程实根(或函数零点)的存在性。
二、掌握微分中值定理应用方法的关键
——在分析解题思路时,必须紧紧抓住 “定理”、“函数”、“区间”三要素
“定理” ——适用定理的选择
“函数” ——辅助函数的构造
“区间” ——讨论区间的确定。
三、运用中值定理证明关于两个中间点等式的方法
方法一:构造辅助函数,在两个不同区间上运用拉格朗日定理或柯西定理,再将定理结论作某种运算。
方法二:构造两个辅助函数,在同一个区间上运用拉格朗日定理或柯西定理,再将定理结论作某种运算。
方法三:构造两个辅助函数,在两个不同区间上运用拉格朗日定理或柯西定理,再将定理结论作某种运算。
微分中值定理证明试题范例
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证: (1)存在η∈(1/2,1),使f(η)=η; (2)对任意实数λ,必存在ξ∈(0,η),使得f'(ξ)-λ[f(ξ)-ξ]1 第二问最后少打了等号,应该是f'(ξ)-λ[f(ξ)-ξ]=1
(1)证明:由介值定理知,至少存在一点ζ∈(0, 1/2), 使f(ξ)=1/2再由介值定理知,至少存在一点η∈(ζ,1),即存在η∈(1/2,1),使f(η)=η
(2) 证明:构造函数F(x)=e^(-λx)[f(x)-x]则F(x)在区间[0,1]上连续,在(0,1)内可导F(η)=0, F(0)=0∴由罗尔定理知,必存在ξ∈(0,η), 使F'(ξ)=0即-λe^(-λξ)[f(ξ)-ξ]+e^(-λξ)[f'(ξ)-1]=0∴f'(ξ)-λ[f(ξ)-ξ]=1