第一章 线性表
作为线性结构的开篇章节,线性表一章在线性结构的学习乃至整个数据结构学科的学习中,其作用都是不可低估的。在这一章,第一次系统性地引入链式存储的概念,链式存储概念将是整个数据结构学科的重中之重,无论哪一章都涉及到了这个概念。
总体来说,线性表一章可供考查的重要考点有以下几个方面:
1.线性表的相关基本概念,如:前驱、后继、表长、空表、首元结点,头结点,头指针等概念。
2.线性表的结构特点,主要是指:除第一及最后一个元素外,每个结点都只有一个前趋和只有一个后继。
3.线性表的顺序存储方式及其在具体语言环境下的两种不同实现:表空间的静态分配和动态分配。静态链表与顺序表的相似及不同之处。
4.线性表的链式存储方式及以下几种常用链表的特点和运算:单链表、循环链表,双向链表,双向循环链表。其中,单链表的归并算法、循环链表的归并算法、双向链表及双向循环链表的插入和删除算法等都是较为常见的考查方式。此外,近年来在不少学校中还多次出现要求用递归算法实现单链表输出(可能是顺序也可能是倒序)的问题。
在链表的小题型中,经常考到一些诸如:判表空的题。在不同的链表中,其判表空的方式是不一样的,请大家注意。
5.线性表的顺序存储及链式存储情况下,其不同的优缺点比较,即其各自适用的场合。单链表中设置头指针、循环链表中设置尾指针而不设置头指针以及索引存储结构的各自好处。
第二章 栈与队列
栈与队列,是很多学习DS的同学遇到第一只拦路虎,很多人从这一章开始坐晕车,一直晕到现在。所以,理解栈与队列,是走向DS高手的一条必由之路,。
学习此章前,你可以问一下自己是不是已经知道了以下几点:
1.栈、队列的定义及其相关数据结构的概念,包括:顺序栈,链栈,共享栈,循环队列,链队等。栈与队列存取数据(请注意包括:存和取两部分)的特点。
2.递归算法。栈与递归的关系,以及借助栈将递归转向于非递归的经典算法:n!阶乘问题,fib数列问题,hanoi问题,背包问题,二叉树的递归和非递归遍历问题,图的深度遍历与栈的关系等。其中,涉及到树与图的问题,多半会在树与图的相关章节中进行考查。
3.栈的应用:数值表达式的求解,括号的配对等的原理,只作原理性了解,具体要求考查此为题目的算法设计题不多。
4.循环队列中判队空、队满条件,循环队列中入队与出队算法。
如果你已经对上面的几点了如指掌,栈与队列一章可以不看书了。注意,我说的是可以不看书,并不是可以不作题哦
第三章 串
经历了栈一章的痛苦煎熬后,终于迎来了串一章的柳暗花明。
串,在概念上是比较少的一个章节,也是最容易自学的章节之一,但正如每个过来人所了解的,KMP算法是这一章的重要关隘,突破此关隘后,走过去又是一马平川的大好DS山河了。
串一章需要攻破的主要堡垒有:
1.串的基本概念,串与线性表的关系(串是其元素均为字符型数据的特殊线性表),空串与空格串的区别,串相等的条件
2.串的基本操作,以及这些基本函数的使用,包括:取子串,串连接,串替换,求串长等等。运用串的基本操作去完成特定的算法是很多学校在基本操作上的考查重点。
3.顺序串与链串及块链串的区别和联系,实现方式。
4.KMP算法思想。KMP中next数组以及nextval数组的求法。明确传统模式匹配算法的不足,明确next数组需要改进之外。其中,理解算法是核心,会求数组是得分点。不用我多说,这一节内容是本章的重中之重。可能进行的考查方式是:求next和nextval数组值,根据求得的next或nextval数组值给出运用KMP算法进行匹配的匹配过程。
第四章 数组与广义表
学过程序语言的朋友,数组的概念我们已经不是第一次见到了,应该已经“一回生,二回熟”了,所以,在概念上,不会存在太大障碍。但作为考研课程来说,本章的考查重点可能与大学里的程序语言所关注的不太一样,下面会作介绍。
广义表的概念,是数据结构里第一次出现的。它是线性表或表元素的有限序列,构成该结构的每个子表或元素也是线性结构的,所以,这一章也归入线性结构中。
本章的考查重点有:
1.多维数组中某数组元素的position求解。一般是给出数组元素的首元素地址和每个元素占用的地址空间并组给出多维数组的维数,然后要求你求出该数组中的某个元素所在的位置。
2.明确按行存储和按列存储的区别和联系,并能够按照这两种不同的存储方式求解1中类型的题。
3.将特殊矩阵中的元素按相应的换算方式存入数组中。这些矩阵包括:对称矩阵,三角矩阵,具有某种特点的稀疏矩阵等。熟悉稀疏矩阵的三种不同存储方式:三元组,带辅助行向量的二元组,十字链表存储。掌握将稀疏矩阵的三元组或二元组向十字链表进行转换的算法。
4.广义表的概念,特别应该明确表头与表尾的定义。这一点,是理解整个广义表一节算法的基础。近来,在一些学校中,出现了这样一种题目类型:给出对某个广义表L若干个求了若干次的取头和取尾操作后的串值,要求求出原广义表L。大家要留意。
5.与广义表有关的递归算法。由于广义表的定义就是递归的,所以,与广义表有关的算法也常是递归形式的。比如:求表深度,复制广义表等。这种题目,可以根据不同角度广义表的表现形式运用两种不同的方式解答:一是把一个广义表看作是表头和表尾两部分,分别对表头和表尾进行操作;二是把一个广义表看作是若干个子表,分别对每个子表进行操作。