考研数学线性代数解题的八种思维定势
2013.06.03 00:00

  掌握有效而又正确的思维定势,在考试做题中能够会达到事半功倍的效果,节省很多时间。下面是线性代数解题的八种思维定势:
  1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E.
  2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
  3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。
  4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。
  5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。
  6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。
  7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。
  8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

MORE+

    资料下载
    MORE+
    MORE+

    相关阅读 MORE+

    版权及免责声明
    1.凡本网注明"稿件来源:新东方在线"的所有文字、图片和音视频稿件,版权均属北京新东方迅程网络科技股份有限公司所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方在线",违者本网将依法追究责任。
    2.本网末注明"稿件来源:新东方在线"的文/图等稿件均为转载稿,本网转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方在线”,本网将依法追究责任。
    3.如本网转载稿涉及版权等问题,请作者致信weisen@xdfzx.com,我们将及时外理

    Copyright © 2011-202

    All Rights Reserved

    热销好课 预约择校指导