2021年博士研究生招生入学考试工作已经展开,新东方在线考博频道将为广大2021考博考生发布转载各博士招生单位发布的2021年博士研究生招生简章、考博专业目录、考博参考书目、及导师联系方式,以下是哈尔滨工业大学2021年博士研究生导师信息:冉启文。
点击查看:全国各院校2021博士研究生招生简章汇总
基本信息
冉启文:男,1963年4月出生于中国重庆,博士,哈尔滨工业大学基础与交叉科学研究院教授,博士生导师。 研究领域包括统计学、小波理论、卫星激光通信、信息光学、信息与通信理论、应用数学,主要研究方向统计学、小波理论、卫星激光通信理论与技术、小波光学与小波、分数傅里叶光学、信息光学与光信息安全、分数傅里叶变换域的信息理论与通信理论、分数傅里叶变换理论。主要特点是应用数学与信息光学、卫星激光通信、信息科学与通信理论的交叉结合。 曾先后两次与香港理工大学计算机系就小波理论和分数傅立叶变换理论进行联合研究。1995年获得航天工业总公司科技进步三等奖1项,2008年获国防科工委科技进步二等奖1项,2009年获国家技术发明奖二等奖1项,2014年获国家技术发明奖一等奖1项。主持和参与国家重大基础科学研究计划973项目、国家高技术863项目、科学试验重大项目、终端研制重大项目、国家自然科学基金重点项目、国家自然科学基金面上项目、国家重点实验室基金项目、国防科工委重点学科实验室基金项目、教育部优秀青年科学基金项目、国防科工委项目等各类科学研究和科学试验项目共15项。申请并已经获得授权的国家发明专利3项、国防发明专利2项。在国内外多个学科和多个种类的顶级学术期刊上发表科学研究论文80余篇。在包括中国科学出版社在内的多个出版社出版学术专著4部。 未来几年,计划招收具有统计学、物理电子学、光学工程、物理学、光学、数学和应用数学、光信息科学与技术、信息科学与通信、信号和图像处理、计算机科学与技术等学科背景的优秀学生攻读应用数学硕士学位以及统计学、物理电子学、光学工程学科的博士学位。 |
研究领域
主要研究方向:统计学、卫星激光通信、小波理论、小波光学、分数傅里叶变换理论、分数傅里叶光学、信息光学、信息与通信理论、应用数学 |
科研奖项
[1] 2014年获国家技术发明奖一等奖1项 [2] 2013年获得国防技术发明特等奖1项 [3] 2009年获国家技术发明奖二等奖1项 [4] 2008年获国防科工委科技进步二等奖1项 [5] 1995年获得航天工业总公司科技进步三等奖1项 [6] 获得授权国家发明专利2项 [7] 获得授权国防发明专利2项 |
学术专著
[1] 冉启文, 谭立英. 《分数傅立叶光学导论》. 科学出版社,2004年 [2] 冉启文, 谭立英. 《小波分析与分数傅立叶变换及应用》. 国防工业出版社,2003年 [3] 冉启文. 《小波变换与分数傅立叶变换理论及应用》. 哈尔滨工业大学出版社,2003年 [4] 冉启文. 《小波理论及应用》. 哈尔滨工业大学出版社,1995年 |
学术期刊
[1] Qiwen RAN, Daniel S. YEUNG, Eric C. C. TSANG and Qi WANG, General Multifractional Fourier Transform method based on the Generalized Permutation Matrix group, IEEE Transactions on signal processing, Vol. 53, No. 1, January 2005, pp. 83-98(IF:2.335) [2] Qiwen RAN, Haiying Zhang, Jin Zhang, Liying Tan and Jing Ma, deficiencies of the encryptography based on multi-parameters fractional Fourier transform, Optics Letters, 34(11), 1729-1731(2009)(IF:3.772) [3] Hui Zhao, Qi-Wen RAN, Jing Ma, and Li-Ying Tan. Generalized Prolate Spheroidal Wave Functions Associated with Linear Canonical Transform. IEEE Transaction on Signal Processing, Vol.58, No.6, pp.3032-3041, 2010(IF:2.335) [4] Zhu B H, Liu S T and RAN Q W. optical image encryption based on multifractional Fourier transforms. Optics letters 2000,25(16) 1159-1161(IF:3.772) [5] RAN qi-wen, Yuan lin, Tan li-ying, Ma jing and Wang qi, High order generalized permutational fractional Fourier transforms. Chinese Physics. 2004, 13(2): 178-186(IF:1.680) [6] Yeung Daniel S, RAN Qiwen, Tsang Eric C C and Teo Kok Lay. Complete way to fractionalize Fourier transform. Optics Communications. 2004, 230: 55-57(IF:1.552) [7] Hui Zhao, Qiwen RAN, Jing Ma and Liying Tan, On bandlimited signals associated with linear canonical transform, IEEE signal processing Letters, Vol. 16, No. 5, pp.343-345, May 2009(IF:1.203) [8] Hui Zhao, Qiwen RAN, Liying Tan and Jing Ma. Reconstruction of bandlimited signals in linear canonical transform domain from finite nonuniformlu spaced samples, IEEE Signal Processing Letters, 16(12): 1047-1050, 2009(IF:1.203) [9] Deyun Wei, Qiwen RAN, Yuanmin Li, Jing Ma and Liying Tan, A convolution and product theorem for the linear canonical transform, IEEE signal processing letters, Vol.16, No.10, 853-856, October 2009)(IF:1.203) [10] Deyun Wei, Qiwen RAN, Yuanmin Li. Generalized Sampling Expansion for Bandlimited signals Associated with the Fractional Fourier Transform. IEEE Signal Processing Letters, 17(6),pp. 595-598, 2010(IF:1.203) [11] Deyun Wei, Qiwen RAN, Yuanmin Li, Jing Ma and Liying Tan. Reply to “Comment on ‘A convolution and product theorem for the linear canonical transform’ ”. IEEE Signal Processing Letters, 17(6), pp. 617-618, 2010(IF:1.203) [12] Qiwen RAN, Hui Zhao, Liying Tan and Jing Ma. Sampling of Bandlimited Signals in Fractional Fourier Transform Domain. Circuits, Systems, and Signal Processing, 29(3):459-467,2010 [13] Hui Zhao, Qi-Wen RAN, Jing Ma, and Li-Ying Tan. Linear canonical ambiguity function and linear canonical transform moments. Optik, In press, 2010 [14] Qiwen RAN, Hui Zhao, Guixia Ge, Jing Ma and Liying Tan. Sampling Theorem Associated with Multiple-Parameter Fractional Fourier Transform. Journal of Computers, 5(5):695-702, 2010 [15] RAN qi-wen, Wang qi, Ma jing and Tan li-ying. Multifractional Fourier Transform method and its Applications to Image Encryption. Chinese Journal of Electronics, 2003,12(1): 29-34(IF:0.148) [16] RAN Q W, Feng Y J, Wang J Z and Wu Q T. The Discrete Fractional Fourier Transform and Its Simulation. Chinese Journal of Electronics 2000, 9(1) p. 70-75(IF:0.148) [17] Zhang, Haiying, RAN, Qiwen, Zhang, Jin. Optical image encryption and multiple parameter weighted fractional fourier transform. Guangxue Xuebao/Acta Optica Sinica 28(2): 117-120, December 2008 [18] Qiwen RAN, Zhongzhao Zhang, Deyun Wei and Shaxue Jun. “Novel nearly tridiagonal commuting matrix and fractionalizations of generalized DFT matrix,” Electrical and Computer Engineering, 2009. CCECE '09. Canadian Conference on 3-6, Page(s):555–558, May 2009 [19] RAN, Qi-Wen, Zhang, Hai-Ying, Zhang, Zhong-Zhao, Sha, Xue-Jun. The analysis of the discrete fractional Fourier transform algorithms, 2009 Canadian Conference on Electrical and Computer Engineering, CCECE '09, 979-982, 2009 [20] Qiwen RAN, Hui Zhao, Guixia Ge, Jing Ma and Liying Tan. Sampling analysis in weighted fractional Fourier transform domain, Computational Sciences and Optimization, 2009. International Joint Conference on, 1: 878-881, Apr. 2009 |