考博考生生准备要参加博士研究生考试时,必须要先确定准备攻读博士的相关专业,然后选择该专业有招生需求的学校,接下来应该联系博士生导师,只有当博士生导师同意考生报考,考博生才可以报考。所以提前了解博士生导师的学术文章及联系方式很重要,新东方在线特整理了各招收博士院校博导的简介及联系方式供考博生参考。
朱玉贤
邮 箱:zhuyx2(AT)pku.edu.cn
职 称:教授
中国科学院院士 北京大学生命科学学院教授 博士生导师 蛋白质与植物基因研究国家重点实验室主任
地 址::北京市海淀区颐和园路5号,北京大学生命科学学院,北京,中国
邮 编::100871
个人简历科研领域描述 基本情况
朱玉贤,中国科学院院士,北京大学教授,博士生导师,蛋白质与植物基因研究国家重点实验室主任。1989年12月在美国康奈尔大学植物科学系获得博士学位,并去华盛顿大学生物系做博士后。91年6月回国后一直在北京大学生命科学学院工作。97年9月至98年12月去美国加州伯克利大学做访问教授。现为中国植物学会副理事长,中国生物工程学会理事,农业生物技术专业委员会副主任;《遗传学报》副主编,《科学通报》特邀编辑,植物分子遗传国家重点实验室、农作物基因组学国家重点实验室学术委员会委员,教育部科学技术委员会生命科学学部委员。1997年获得国家自然科学基金委“国家杰出青年科学基金”资助,2001年被教育部聘为“长江学者”,2003年成为国家自然科学基金委“创新团队”学术带头人。培养博士后3名、博士13名、硕士15名。
主要研究方向
棉纤维细胞伸长机制、植物激素的作用机制、基因表达调控机制
主要研究成果:
1、棉花纤维发育早期特异性表达基因的大规模分离与克隆
首次利用抑制性减法杂交技术在国际上展开了大规模棉纤维中差异表达基因的克隆分离工作,在国际棉花界产生了广泛的影响。建成了具有国际领先水平的大型高通量陆地棉cDNA芯片,发现植物激素乙烯生物合成途径在棉花纤维细胞伸长过程中的主导作用。发现超长链脂肪酸(VLCFA)参与植物激素信号转导,在转录水平上调控乙烯合成关键酶基因ACO的活性。发现受乙烯和超长链脂肪酸调控的果胶多糖生物合成是棉纤维细胞初生壁合成和细胞伸长的限速步骤,是世界上第一个在功能基因组学水平证实植物激素乙烯对超常伸长细胞,包括棉纤维和植物根毛等具有正向调节作用的课题组,为调控棉纤维伸长、提高纤维品质提供了重要的理论依据。2008年获得教育部自然科学一等奖,2011年获得国家自然科学二等奖。
2、拟南芥转录调控因子家族基因的克隆与研究
研究拟南芥乳腺癌抑制因子同源基因BARD1突变体,发现缺失BARD1基因时拟南芥干细胞决定因子WUS的表达从顶端的组织中心转移到外表层细胞,导致拟南芥顶端分生组织分化进程受阻。BARD1基因在拟南芥根尖与WOX5相互作用,控制植物向地性生长和根尖分生组织细胞分化。
克隆了146个AP2/EREBP转录调控因子家族基因(该家族最多可能有147个基因),并进行了大规模基因表达谱分析,找到了一批可能参与调控各种生理过程的受不同环境条件或处理诱导表达的转录调控因子基因。通过对拟南芥ATH1基因芯片数据的分析, 鉴定了一个受干旱胁迫高水平诱导的cDNA片段, 并用RACE方法获得了其全长cDNA。PCR及定量实时PCR分析表明, 该基因在经干旱、紫外线照射、脱落酸、高盐以及水杨酸等胁迫条件处理后表达量均有显著提高, 特别是干旱处理后短时间内表达量迅速提高,3 h后即提高到对照样品的430多倍。通过多序列比对和系统进化分析,将该基因归于DREB亚家族。由于该基因编码蛋白含有典型的AP2/EREBP DNA结合结构域,并在N端有一段富含谷氨酰氨残基的区域,所以将它命名为QRAP2 (Glutamine-rich AP2)。凝胶阻滞实验结果显示, QRAP2蛋白能够特异结合DRE顺式元件序列但不能与mDRE和GCC等非相关元件结合。酵母单杂交实验表明,QRAP2蛋白全长序列或其N端112个氨基酸与GAL4 DNA结合结构域形成的融合蛋白表现出转录激活功能,而其C端135个氨基酸与GAL4 DNA结合结构域的融合蛋白则没有表现出转录激活活性。现有资料的分析表明,QRAP2是AP2/EREBP转录因子家族的新成员,可能在干旱胁迫条件下参与激活相关下游基因的表达。还研究了TINY2等多个转录因子的表达特性。正在通过拟南芥缺失突变体对参与植物抗性反应及植物激素ABA信号转导相关基因进行系统性功能研究。
3、论文论著
已发表经同行评审的科研论文106篇,其中被SCI收录96篇(通讯作者或第一作者的SCI论文70篇),包括2篇Nature Genetics,3篇植物科学国际最前沿刊物Plant Cell,1篇美国科学院院报,1篇Mol. Cell. Proteomics,2篇 CURR OPIN PLANT BIOL。总影响因子超过392,篇均影响因子相当于世界植物科学排名10%的刊物。论文共被SCI引用1400多次,其中他引1200多次,高水平学术刊物如Nature及其系列刊物,Science,PNAS,Plant Cell及年评、年鉴等引用160多次。所主编的《现代分子生物学》一书从1997年出版至今17年来(四版)已发行超过40万册,成为我国高等学校生物学专业本科生分子生物学最主要的教材,在青年学生中产生了广泛影响。
Major Research Areas:
This laboratory is interested in two major research areas: large-scale cloning and analyses of genes involved in early cotton fiber development, and regulatory mechanisms of transcription factors in Arabidopsis shoot and root meristem development. Using cDNA prepared from 10dpa (days post anthesis) wild-type cotton fiber as tester and cDNA from a fuzzless-lintless (fl) mutant as driver, we applied the RDA method to recover 280 independent cDNA fragments related directly to early cotton fiber development. cDNA microarrays showed that 172 genes were significantly up-regulated in elongating cotton fibers as confirmed by in situ hybridization in representative cases. Twenty-nine cDNAs, including a putative vacuolar (H+)-ATPase catalytic subunit, a kinesin-like calmodulin binding protein, several arabinogalactan proteins and key enzymes involved in long chain fatty acid biosynthesis, accumulated to greater than 50-fold in 10 dpa fiber cells when compared to that in 0 dpa ovules. Various upstream pathways, such as auxin signal transduction, the MAP kinase pathway, and profilin- and expansin-induced cell wall loosening, were also activated during the fast fiber elongation period. Large-scale transcriptome profiling revealed that the plant hormone ethylene is involved in regulation of cotton fiber elongation growth and very long chain fatty acids participated in cell elongation growth by controlling the biosynthesis of ethylene in developing cotton fiber cells.
The lab is also involved in cloning and expressional analyses of 8 large gene families (AP2-EREBP、bHLH、C3H-TYPE2(Zn)、E2F-DP、HMG-BOX、NIN-like、PCG、TCP) encoding Arabidopsis transcription factors. WUS1 has been extensively studied and identified as a master regulator for specification of shoot stem cell fate in Arabidopsis. A network of regulators including not only canonical transcriptional factors like Apetala 2 (AP2) , Class III HD-ZIP family proteins including CORONA, PHABULOSA, PHAVOLUTA and REVOLUTA, together with the chromatin remodeling factor SPLAYED (SYD), function to precisely tune the transcription of WUS1. We observed severe SAM defects in the Arabidopsis knock-out mutant, bard1-3 (homologue of a breast cancer suppressor in human). Disordered cell division and dysfunction in differentiation was found in bard1-3 mutant. WUS1 transcripts accumulated to more than 238-fold in bard1-3 compared to wild-type and were located mainly in the outermost cell layers instead of the usual organizing center (OC). Increased BARD1 expression in CaMV35S::BARD1 transgenic plants reduced WUS transcript levels to about 25% of wild-type and resulted in a wus-1-like phenotype. Consistent with the restricted expression pattern of WUS1 in OC, predicated nucleosome positioning indicated the occupation of nucleosomes in WUS1 promoter region. Extensive protein motif analysis suggested a potential plant homeo domain (PHD) in the middle region of BARD1, which was reported to recognize H3K4Me3 on histone H3 tail.
教育经历1986 - 1989 , 理学博士 , 植物科学系 , 美国康奈尔大学
1978 - 1982 , 理学学士 , 农学系 , 浙江农业大学
工作经历2002 - 至今 , 主任 , 蛋白质与植物基因研究国家重点实验室
1994 - 至今 , 教授 , 北京大学生命科学学院
1992 - 1994 , 副教授 , 北京大学生命科学学院
执教课程基础分子生物学 , 主持/主讲 , 北京大学
社会服务工作1. 2013 - 至今 , 主任 , 教育部大学生物学课程教学指导委员会
2. 2013 - 至今 , 技术副总师 , 转基因生物新品种培育重大专项总体组
3. 2008 - 至今 , 副理事长 , 中国植物学会
4. 2002 - 至今 , 委员 , 农业部国家转基因生物安全委员会荣誉何梁何利科学与技术进步奖 , 2012
国家自然科学二等奖 , 2011
国家级教学成果奖二等奖 , 2009
教育部自然科学一等奖 , 2008
教育部科技进步二等奖 , 2000
中国国家图书提名奖、中国国家科技图书奖 , 1999
杂志编辑常务副主编 , 《中国科学:生命科学》(中文版) , 2012 - 至今
Editorial Board Member , 《Molecular Plant》 , 2008 - 至今
编委 , 《生物化学与生物物理学报》 , 2008 - 至今
副主编 , 《遗传学报》 , 2004 - 至今
特邀编委 , 《科学通报》 , 2004 - 至今
会议发言1. 棉花A、D基因组数据分析、基因组演化及基因功能研究,中国植物生理与植物分子生物学学会第十一次会员代表大会暨全国学术年会,贵州贵阳 , 2014.8.5
2. 棉花A、D亚基因组数据分析与前景展望,2013中国作物学会学术年会,郑州 , 2013.10.20
3. 棉花不同亚基因组数据比较、功能与演化分析,中国植物学会第十五届会员代表大会暨80周年学术年会,南昌 , 2013.10.13
4. 棉花基因组研究进展,2013年全国植物生物学大会,南京 , 2013.10.8
5. Phylogenetic and biochemical insight of the diploid cotton Gossypium raimondii genome,10th International Conference on the Frontiers of Plant Biology: Development and Environment,安徽黄山 , 2012.11.4
6. Ethylene-regulated pectin biosynthesis is important for the elongation growth of cotton fiber and Arabidopsis root-hair,CSHA/ISSCR Stem Cells Meeting, 苏州 , 2010.10.24
7. Comparative proteomics reveals important biochemical pathways during cotton fiber elongation,2010年国际棉花基因组研究大会,澳大利亚 , 2010.9.27
8. Insights to the regulatory mechanisms of the transcription factor WUS1,第9届世界植物分子生物学大会(IPMB)“Symposium: Transcription Factors”,美国密苏里州ST LOUIS市 , 2009.10.26
9. 乙烯合成与棉纤维细胞伸长机制研究,遗传学会植物遗传和基因组学专业委员会2009年学术研讨会 ,山东泰安 , 2009.9.26
10. 运用功能基因组学方法研究棉纤维细胞伸长机制,第十届全国植物生理学代表大会,开封 , 2009.8.15
11. Mutation in the Arabidopsis BARD1 BRCT Domain Releases WUSCHEL Expression from the Organizing Center,第九届全国植物基因组学大会,广州 , 2008.8.17
代表性论文1. Li, F. G., Zhu, Y. X., Wang, J. Yu, S. X et al , Genome sequence of the cultivated cotton Gossypium arboretum , Nature Genetics , 2014 , 46: 567-572
2. Li, Q., Xiao, G. H., and Zhu, Y. X , Single-nucleotide resolution mapping of the Gossypium raimondii transcriptome reveals a new mechanism for alternative splicing of introns , Molecular Plant , 2014 , 7: 829-840
3. Zhu, Y. X , Regulation of cotton lint growth. In: McGraw-Hill , Yearbook of Science & Technology , 2014 , 319-322
4. Jin, X., Pang, Y., Jia, F. X., Xiao, G. H., Li, Q., Zhu, Y. X , A potential role for CHH DNA methylation in cotton fiber growth patterns , PLOS ONE , 2013 , 8: e60547
5. Zhu, Y. X. and Li, F. G , The Gossypium raimondii genome, a huge leap forward in cotton genomics , J. Integrative Plant Biology , 2013 , 55: 570-571
6. Jin, X., Li, Q., Xiao, G. H., Zhu, Y. X , Using genome-referenced expressed sequence tag assembly to analyze the origin and expression patterns of Gossypium hirsutum transcripts , J. Integrative Plant Biology , 2013 , 55: 576-585
7. Wang, K. B., Zhu, Y. X. , Wang, J., Yu, S. X. et al , The draft genome of a diploid cotton Gossypium raimondii , Nature Genetics , 2012 , 44: 1098-1103
8. Li, Q., Jin, X., Zhu, Y. X , Identification and analyses of miRNA genes in allotetraploid Gossypium hirsutum fiber cells based on the sequenced diploid G. raimondii genome , Journal of Genetics and Genomics , 2012 , 39: 351-360
9. Qin, Y. M. and Zhu Y. X , How cotton fibers elongate: a tale of linear cell-growth mode , Curr. Opin. Plant Biol , 2011 , 14 : 106-111
10. Wang, H., Mei, W. Q., Qin, Y. M. and Zhu, Y. X , 1-Aminocyclopropane-1-carboxylic acid synthase 2 is phosphorylated by calcium-dependent protein kinase 1 during cotton fiber elongation , Acta Biochim. et Bioph. Sin , 2011 , 43: 654-661
11. Pang, C.Y., Wang, H., Pang, Y., Xu, C., Jiao, Y., Qin, Y.M., Western, T.L., Yu, S.X. and Zhu, Y.X. , Comparative proteomics indicate that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation , Molecular Cellular Proteomics , 2010 , 9: 2019-2033
12. Pang, Y., Wang, H., Song, W. Q. and Zhu, Y. X , The cotton ATP synthase δ1 subunit is required to maintain a higher ATP⁄ADP ratio that facilitates rapid fibre cell elongation , Plant Biology , 2010 , 12: 903-909
13. Zhu, Y. X , The epigenetic involvement in plant hormone signaling , Chinese Science Bulletin , 2010 , 55: 2198-2203
14. Mei, W. Q., Qin, Y. M., Song, W. Q., Li, J. and Zhu, Y. X , Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation , J. Genet. Genomics , 2009 , 36: 141-150
15. Song, W.Q., Qin, Y.M., Saito, M., Shirai, T., Pujol, F.M., Kastaniotis, A.J., Hiltunen, J.K. and Zhu, Y.X , Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif , Journal of Experimental Botany , 2009 , 60: 1839–1848
16. Han, P. and Zhu, Y. X , BARD1 may be renamed ROW1 because it functions mainly as a REPRESSOR OF WUSCHEL1 , Plant Signaling & Behavior , 2009 , 4: 52-54
17. Han P, Li Q, Zhu YX , Mutation in the Arabidopsis BARD1 BRCT Domain Releases WUSCHEL Expression from the Organizing Center , The Plant Cell , 2008 , 20:1482-1493
18. Qu, L. J. and Zhu, Y. X , Transcription factor families in Arabidopsis: major progress and outstanding issues for future research , Curr. Opin. Plant Biol , 2007 , 9: 544-549
19. Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX , Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis , The Plant Cell , 2007 , 19: 3692-3704
20. Shi YH, Zhu SW, Mao X, Feng JX, Qin YM, Zhang L, Cheng J, Wei L, Wang ZY, Zhu YX , Transcriptome profiling, molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation , The Plant Cell , 2006 , 18: 651-664
21. Gong, W et al. , Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes , Plant Physiol , 2004 , 135: 773-782
22. Ji SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, Fu Q, Liu D, Luo JC and Zhu YX , Isolation and Analyses of Genes Preferentially Expressed During Early Cotton Fiber Development by Subtractive PCR and cDNA Array , Nucleic Acids Res. , 2003 , 31: 2534-2543
23. Zhu, Y. X., Tepperman, J. M., Fairchild, C. and Quail, P. H , Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3 , Proc. Natl. Acad. Sci. USA , 2000 , 97: 13419-13424