考博英语阅读每日一练23
2014.04.16 12:39

 

  Until about five years ago, the very idea that peptide hormones might be made anywhere in the brain besides the hypothalamus was astounding. Peptide hormones, scientists thought, were made by endocrine glands and the hypothalamus was thought to be the brains’ only endocrine gland. What is more, because peptide hormones cannot cross the blood-brain barrier, researchers believed that they never got to any part of the brain other than the hypothalamus, where they were simply produced and then released into the bloodstream.

  But these beliefs about peptide hormones were questioned as laboratory after laboratory found that antiserums to peptide hormones, when injected into the brain, bind in places other than the hypothalamus, indicating that either the hormones or substances that cross-react with the antiserums are present. The immunological method of detecting peptide hormones by means of antiserums, however, is imprecise. Cross-reactions are possible and this method cannot determine whether the substances detected by the antiserums really are the hormones, or merely close relatives. Furthermore, this method cannot be used to determine the location in the body where the detected substances are actually produced.

  New techniques of molecular biology, however, provide a way to answer these questions. It is possible to make specific complementary DNA’s (c DNA’s) that can serve as molecular probes seek out the messenger RNA’s (mRNA’s) of the peptide hormones. If brain cells are making the hormones, the cells will contain these mRNA’s. If the products the brain cells make resemble the hormones but are not identical to them, then the c DNA’s should still bind to these mRNA’s, but should not bind as tightly as they would to m RNA’s for the true hormones. The cells containing these mRNA’s can then be isolated and their mRNA’s decoded to determine just what their protein products are and how closely the products resemble the true peptide hormones.

  The molecular approach to detecting peptide hormones using cDNA probes should also be much faster than the immunological method because it can take years of tedious purifications to isolate peptide hormones and then develop antiserums to them. Roberts, expressing the sentiment of many researchers, states: “I was trained as an endocrinologist. But it became clear to me that the field of endocrinology needed molecular biology input. The process of grinding out protein purifications is just too slow.”

  If, as the initial tests with cDNA probes suggest, peptide hormones really are made in brain in areas other than the hypothalamus, a theory must be developed that explains their function in the brain. Some have suggested that the hormones are all growth regulators, but Rosen’s work on rat brains indicates that this cannot be true. A number of other researchers propose that they might be used for intercellular communication in the brain.

  1. Which of the following titles best summarizes the text?

  [A] Is Molecular Biology the Key to Understanding Intercellular Communication in the Brain?

  [B] Molecular Biology: Can Researchers Exploit Its Techniques to Synthesize Peptide Hormones?

  [C] The Advantages and Disadvantages of the Immunological Approach to Detecting Peptide Hormones.

  [D] Peptide Hormones: How Scientists Are Attempting to Solve Problems of Their Detection and to Understand Their Function?

  2. The text suggests that a substance detected in the brain by use of antiserums to peptide hormones may

  [A] have been stored in the brain for a long period of time.

  [B] play no role in the functioning of the brain.

  [C] have been produced in some part of the body other than the brain.

  [D] have escaped detection by molecular methods.

  3. According to the text, confirmation of the belief that peptide hormones are created in the brain in areas other than the hypothalamus would force scientists to

  [A] reject the theory that peptide hormones are made by endocrine glands.

  [B] revise their beliefs about the ability of antiserums to detect peptide hormones.

  [C] invent techniques that would allow them to locate accurately brain cells that produce peptide hormones.

  [D] develop a theory that account for the role played by peptide hormones in the brain.

  4. Which of the following is mentioned in the text as a drawback of the immunological method of detecting peptide hormones?

  [A] It cannot be used to detect the presence of growth regulators in the brain.

  [B] It cannot distinguish between the peptide hormones and substances that are very similar to them.

  [C] It uses antiserums that are unable to cross the blood-brain barrier.

  [D] It involves a purification process that requires extensive training in endocrinology.

  5. The idea that the field of endocrinology can gain from developments in molecular biology is regarded by Roberts with

  [A] incredulity.

  [B] derision.

  [C] indifference.

  [D] enthusiasm.

  [答案与考点解析]

  DCDBD

MORE+

    资料下载
    MORE+
    MORE+

    相关阅读 MORE+

    版权及免责声明
    1.凡本网注明"稿件来源:新东方在线"的所有文字、图片和音视频稿件,版权均属北京新东方迅程网络科技股份有限公司所有,任何媒体、网站或个人未经本网协议授权不得转载、链接、转贴或以其他方式复制发表。已经本网协议授权的媒体、网站,在下载使用时必须注明"稿件来源:新东方在线",违者本网将依法追究责任。
    2.本网末注明"稿件来源:新东方在线"的文/图等稿件均为转载稿,本网转载出于传递更多信息之目的,并不意味着赞同其观点或证实其内容的真实性。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。如擅自篡改为"稿件来源:新东方在线”,本网将依法追究责任。
    3.如本网转载稿涉及版权等问题,请作者致信weisen@xdfzx.com,我们将及时外理

    Copyright © 2011-202

    All Rights Reserved